Multiple-stream Language Models for Statistical Machine Translation

نویسندگان

  • Abby D. Levenberg
  • Miles Osborne
  • David Matthews
چکیده

We consider using online language models for translating multiple streams which naturally arise on the Web. After establishing that using just one stream can degrade translations on different domains, we present a series of simple approaches which tackle the problem of maintaining translation performance on all streams in small space. By exploiting the differing throughputs of each stream and how the decoder translates prior test points from each stream, we show how translation performance can equal specialised, per-stream language models, but do this in a single language model using far less space. Our results hold even when adding three billion tokens of additional text as a background language model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Stream-based statistical machine translation

We investigate a new approach for SMT system training within the streaming model of computation. We develop and test incrementally retrainable models which, given an incoming stream of new data, can efficiently incorporate the stream data online. A naive approach using a stream would use an unbounded amount of space. Instead, our online SMT system can incorporate information from unbounded inco...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

Streaming Large Language Models for Statistical Machine Translation

This paper presents an efficient low-memory method for constructing high-order approximate n-gram frequency counts. The method is based on a deterministic streaming algorithm which efficiently computes approximate frequency counts over a stream of data while employing a small memory footprint. We show that this method easily scales to billion-word monolingual corpora using a conventional (4 GB ...

متن کامل

The RWTH Aachen German-English Machine Translation System for WMT 2015

This paper describes the statistical machine translation system developed at RWTH Aachen University for the German→English translation task of the EMNLP 2015 Tenth Workshop on Statistical Machine Translation (WMT 2015). A phrase-based machine translation system was applied and augmented with hierarchical phrase reordering and word class language models. Further, we ran discriminative maximum ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011